IVE&VISSUESINACHIEVING HIGH RETLIABILITY ANJ) SAFETY IN CRITICAY, CONTROL1,
SYSTEM SOFIWARE

Allen . Nikoa
Jet Propulsian 1 aboratan y
4800 Oak Grove L nive
PYasadena, CA 91109-8099
Mail Stop 264-80S
VOX: (61 8)393-1 104
fax- (81 8)393-7830
Allen P Nikora@plnasagov

Keywords:
assessmant

Abstract

Risk analysis and integraled verification and vahdation are two
important clemants in a plan for ensuring the safety of critical softwaie
sydems We deseribe an approach we are conantly developing for
integrating risk analysis, 1cliability analysis, and miclt ics analysis, and
propose a fault predictor that would integrate the results of these adtivities
Practical difficulties associated with mu apynoach are aso discussed, as me
limitaticns of the proposed predicdtor. We canclude with adiscussian of what
has been learmed to date, and with suggedions for fulure work

1. introduction

Risk snalysis and integrated verification and validation AV&V) are
two important elements in a plan for ensarnig the safety of aitical software
systeans By risk analysis we refer 1o estimating the probability of the
soflware antlezing a hazadous stale whidh could lead an undesirable evant,
such as Joss Of life or equipmnent. If the 1isk is unacoeptable, approprisate steps
aretaken to reduce it to an acoeptable Jevel

According 10 JHEY $1d 610.12, venification ensuies that the software
produced in each phase is consistent with soflware produced in the previous
phase, v.hilt validation ensures that the software is produced i accordance
with requiremants Thus IV&V and nisk analysis e related: 1V&V can be
used tO reduce 1isk by anploying ingection, testing, safely smalysis,
yelinbility analysis, md metrics analysis Ow rescarch S focused an the lagt
three,

In 118k 1 edudion, wc ditmguish between soflware yeliahility and
software safety. The former is defined as the probability of no failure, while
the latten is defined as the probability of no mishap. Furthermoe, the purpose
of 1eliability requitemcats istomake software failure-flee and the purpose of
safcty requirements is tomake soflware nushap-free. Software reliability),
and soflware safety share the goal of designing, mto the software the
reliability andsafety that is required to reduce risk to s acoeptable level

As aitical sydtams play ingcasingly greater roles in owr society, it is
impaortant to develop approaches that can be used to bath reduce risk and
ina case religbility and safety. With this goalin mind, we are investigating,
an approadh whid integ at es the following,

Risk Analysis: Wc are canduding an experiment to see whethe

1equirennents risk indicalors arc statistically related to the soflware

safety risk metrics that we developed and validated for the Space

Transportation Systein (S1'S) [1;

+ Reliability Analysis: We are using cunently available software
1eliability models to: @) predict titne to next failure and remaining,
faihwes for areas Of the soflware that the nisk analysis bas identified as
cantainiag hazards, and b) ccoversely, using, the reliability predidions
1o idaify soflware that should reccive priomity atiention for ri sk
analysis due t0 relatively low reliability predidions as indicated by
short tirae to next failure ar high ramaining, failures, and
Metries Analysis: We arc examining, the usc of metsics as early
indicators of reliability y. 3 ke risk analysis, the use of meliics 1¢
designed to provide caily indicators of pocr quality SO that corredive
action ¢an be taken early an while the cot 0f eror canection 3¢
minimal We intend to integrate the use of metrics end reliability by
uwtitizing the merics validation methodology developed by
Sdmeidewind [2], which is a core part of 11k Std 1061 Stamdard for
a Software Qualit y Metrics Methodology. The purpose of the
validation will be to identify those ractrics which have suflicient
association with defect report counts, failure counts and time to next
failure - bolh observed and predicted - 1o ser ve as early indicators of
reliability.

Norman Y. Sdncidewind
Naval Posigraduate School
Code Sm/Ss
Mataey, CA 93943
vox: (408)656.27 19
fax: (40.5)656 3407
Sdneidewind@ypsnavy.mil

Jahn €. Munsan
Gregory A Hall
Computer Sciance Department
University of Idaho
Moscow, 11> 83844-1010
vox: (208)885-7789
fax: (208) 8S8.5-9052
{imunsan, ghall}@es vidaho.edu

Soflwate complexity, software evolutian, software functicnality, soflware metrics, software metries validation, softwar € reliability, software risk

We desaibe the details of ourapproadtin Sections 2 through 4

2. Risk Analysis

2.1 Feasibility of Fault Tree Analysis

Our mitial idea was to analyze seleded porticns of the ST°S flight
cntrol soflware using Fault Tree Analysis (F1'A) to identify safely hazard
soen anos, as recomnended by the National Researd) Council (NRC). We
wae also ntaested in identifying fault trees at the system level to sec
wiiethes these could be used to ident ify par ts of the software needing more
mitensive reliability analysis Furthermme, we wae intaeded in secing,
whethes the hazards are related to high failure rates and to high code
comyplexity. However, m detailed discussions with Johnsan Space Center
(ISC) requiramants, safety, and quality enginecrs and with theitcoumteparts
at the flight software developer, 1 ockheed-Maitin (1-M), and with its
developmant and nspedtion persannel, it was determined that FIA, although
not impossible to perform, would be bath technically and ecanomically
i feasable for existng sofl arc, for the fo] 1 ewmg reasans Yirst of all,
Tequirements are gpecified with a vaniety of methods and formats, including
omtrol systeun type diagrams, flow diagrams, state diagrams, and YIATJS
oode The requiraments are also specified by various organizations, including,
JSC,] napa 1 abs, and Rockwell-Downey. Scond, many requirements
an alysts who would be able to explain their requirements development
approach have setired from JSC. Also, too many documants and procedures
would have to be modified to sucocsdfully implement ¥T'A Finally, the cost
of training both JSC and eautradton pessannel in FI'A is outside the scope of
owr eflort

2.2 Approach

As a result of the discussions \vith JSC and development contracton
pasamel, we have decided to use the S'1'S soflware to conduct an
expa iment to deteninine the extent to which requirements risk indicators ate
datigically related to the soflware safely risk metrics that we developed and
validated for the SIS softiware [1]. Unitike previous work mvolving, ,SI'S
software, this wotk deals with the frant end of the softwate process where the
sees of major future reliability problems arc sown Incomplete, meonsistent,
ambigoous, or otherwise eraneous 1equirements can cause g eat problemns
with soflwa ¢ 1eliability and quality duwring operation use In additicn, there
e 1isks associated with aeating new software m modifying exidting,
software i order to implanent @ requitemants change The followin g are
typical risk fadars

s Qualitative assesanent of change complexity (e.g , per [3, 4]).

. Size of data and code areas aflected by achange

. Number of lines of code aftected by adhange

. Tiffect o CPUperformance.

. Areaof the program aflected by achange

s Numbeand types of oha requitements affeated by achange.

. Whether a software change 1s an @ nomiual or ofl-nominal program
pal]]

. Nunber of systan raid hardware failures that would have to ocan
before the code inplementing the requirement would be executed

. Opcerational phases affected

. New or existing, code that is afleded by achange.

. Posible canflicts amang reguirements dianges

. }ftant required 1o implement achange

. Yiftont requited to verify and validate the cotrecness of achmge.

« Software tool aeation imodification needed to inplanent adianpe

The softwar C safety aad risk metrics describedin [1] address the two
safely goals desar ibed below. Defining, ous safety goal as the redudion of
failures that would cause loss of life, loss of missian, or abort of missian to
an acceptable level of risk [5], then for software to be ready to deploy, after
having bea tested for total time ty, we must satisfy the following critesia:

1) predicted ramaining failues R()<R, where R isa (1)
specified aitical value, and
2) pedicded time to next failure Ty()>,,, @where 4, i's 2

missian duration
Both aaiteria are needed becanse they relate to two different but related
agpedts of risk: 1) residual faults that may be in the softwar ¢ dwing a
missian and 2) a failure occur mg before the missian IS conyplete. Sinee the
SI'S is tested and oparated cantinuously, 1, ‘1I":(q), and 1, a8 measored in

excaution time. As With any soflware saldly assurance methodology, we
cannol guarantee safety. Rather, with these aiteaia, we seek to reduce the
nisk of deploying the sofiware to an acoeptable level.

2.2.1 Remaining Failures Criterion

Assuraing that the faults causing failures rac removed (as is the case
forthe SI'S), criterion] specifies that residual failures and faults mudt be
1educed 1o alevel where the risk of operating the software is acoeptable. We
SUppest R =1, o having, the expected value of the remaining failures be less
thanane belae deploying the softwaie I WC predict R(t)<K . the mission
could begin at 4. ITowevcs, i R{)>R , we wonld test for & tota) time 4,'>4
until R(ll')<Rc, assuming that we will experiaice mote faitures and conedt
mote faults so that the remaining failures will be reduced by R(t)-R(t).If a

developer has msufticiant 1esources or is otherwise wmable to satidy the
aiterian, the risk of deploying the sofiware prematurely should be assessed
(see Section 23). In both cases criterion 2) 1t alsO be satisfied far the
missian to begin

One way o pecily R is by failure severity level (e.g, severity level
for life threatening, failures). Anothes, more demanding, miethod, is to speaily
that R represents alf seva ity Jevels For example, R(t)<1would mean that

R(t) must be less thanone failure, independent of severity level

2.2.2 Time to Next Failure Criterion

Criterion 2 dates that the soflware mudt survive for a titne greates
than the daration of the mission. If we predicd T3(4)>1;,,, the mission could
bepin at . However, i Ty(t)<,,), we wonld continue to tedt for a total tinme
"> wtil we are able to predict 'J'].~(tt")>1m, assuming that we will
experienoe more failures and cotrect more faults S0 that the time to next
failure will be increased by the quantity T (")} Tg{) Again, if it is
infeasible for the developer to satisfy the aiterion for lack of resouwrees m
failure to achieve test objectives, the risk of deploying th e sofiware
premat urely should be assessed (see Sectian 2.3). In both cases criterion 1)

must also be satisfied for the mission t0 begin I neither aitaian 1s satisfied,
weted for @ time which is the greater of ' or ",

2.3 Risk Assessment

The amount of total test executian time 1 can be cansidered a measure
of the softwase’s maturity, particularly for systeins like the SI'S where the
software 1s subjected to eantinnous and rigo; ous testin 8 for several vears in
multiple facilities (c. g, by 1.ockheed-Martin in Houdan, by NASA in
Houdon for astranaut trammg, end by NASA a Cape Canavaal), using, a
variety of opcrational and Uainiing scenarjos If we view 1y &s an input to &
nsk reducticn process, and R(Yy) and Ty(t)) as the outputs, then R, and t, |
arce the "levels” of safety that cantrol the prooess While we recognize that
test time is not the anly cansideration 1 developing, ted strategies arrd that

there are other important factors, like tbe consequences for reliability and
cost, inselecting, t et cases {6], nevertheless, for the for cgoing reasans, fest
time hal beon found to be stiangly positively con clated with reliability
growth for the SIS [7].

2.3.1 Remaining Failures
We can formulate the 1isk metric for criterion I as follows:

Risk Rt} (Rt)-R IR = RERY-1 3
Positive, zero, and negative values of equatian (3) conrespond to
R)R R) R, and R{UD<R, 1espectively, which in tun identify the

UNSAVE, NEUTRAL, and SAFF regions Of operation, respectively.

2.3.2 Time to Next Failure

Siinilarly, we canformulate the risk metsic foreriterion 2 as follows:
Risk Metric T30t @, TR = RO, Q)
Positive, zero, and negative values of equatian (4) contespand to
3 3t TR 4 and TR, repedtively, whiddin tun identify
the UNSAFE, NEUTRAL, and SAFE regians of operation, respedively.

Our pupose 1S 1o sec whethes 1netrics collected during, the static
malysis of the SIS flight software (i.e., during requiranaits ingpoctian)
have a quantitative relationship with metrics collected during, the dynamic
analysis of the software (i ¢, during testing and reliability prediction). Wc
are also mvedtigating how the require.rmaits nisk indicators vary with a
vatiety of structu ral daradtenistics of the SI'S code Fran these aualyses WC
hope 1o be able to identify those software-selated charadtamistics of
1equirennents that pose the greatest isk to S*1'Ssoflware safely, Th ese
aalyses, it 1 combinalicr | with otha mothods Of asau ance, sud 1 as
ingrections, defect prevention, project control boards, process assessmant,
and fault tacking, provide a quantitative basis for adhieving safety and
1cliability objectives [8].

3. Measuring System Fvolution

Our puipose in analyzing software metrics will be to relate measues of’
soflware strudure to fault cantent and the dynamic behavior of the system
Speafically, we intend to extend previous work in measuting, structural
diaadendtics of soflware systamns to include measur ing, the eflects cn fault
cantent and reliability of changes to, additians to, and deletians of code from
soflware [9].

3.1 Establishing a Mcasurement Baseline

When measuting, software evolutiar 1, we need to establish - a
measwrement baseline {1 O]. WC need a fixed point againg which all others
can be compated Our measurement baseline aso needs to maintain the
prperty that, whas another point is chosan, the exad same pidwe of
software evolutian emarges - anly the pespedive dianges The mdividual
poits juvolved in measuring soflware evolution arc individual builds of the
systemn

One problem with using raw measwremants is that they are al an
difler ent scales Companing difterent modules within a software system by
using, raw measuremant data is compheated by this fadt Tn order to make
such compatisans it is necessary to standardize the data Standardizing
wcdrics for one particular build is simple. ¥or cach nictric obtained fm each
module, sublract fram that metnic itS mean arid divide by its standard
deviation This puts all of the metrics an the smme 1elative scale, with a
mea of zero and astandard deviatian of ane. This winks fine for comparing,
modules within ane particular build But when we standardize subsequent
builds using the means and standard deviations for those builds @ problemn
a1 1ses The standardization masks the change that has occuned batwemn
builds in order to place al the metrics an the same relative scale and to
keep from losmp, the effect of changes betwea: builds, all build data is
stamdardized using the means and standard deviations for the metries
obtained from the baseline system This prese ves trends in the data and lets
measureinents from diflerent builds be compared

3.2 Measuring Code Deltas

As asystem evolves through a series of builds, its complexity will
diange. This complexity is measured by a st of soflware mdrics One
simple asscssment of the size of a software systemn is the number of lines of
code pa module. However using anly cne metric negleds information about
the other complexity attiibutes of the system, such as control flow and
temporal complexity. By conmparng, successive builds ca their domain
metrics it is possible 10 sec bow these builds eitherinc ease 01 decr ease based
o particul atallribute domains. Using relative complexity, the ove all
systam complexity can be manitored as the system evolves [11]. This
relative canplexity metric has bean constructed to sex ve as a fault smogate
Modules that have large relative complexity values ate those mos likely to
contain soflwa C faults

A code deltais, as the name itnplies, the difference batween two builds
as compuled fos the relative complexity metric. These deltas represent how
the code has expranded o cantradied with respect to the relative complexity
metiic [12]

The formula for computing code deltas is quite Smple. 1tis given as:

Awi™(p, - PYX*)

wher ¢ PA qud pyp3 are vectors of the relative comiplexity meiics for the

. . B,
modules for the p1evious and subsequent builds of the systein amd XA is a
vedtar defmed as follows XA" has as many andiies in it as their have been

. L . . N
maodules in the system to this point. That is 10 say, the size of XA is equal
to the cardinality of the ad {Mjw M2 w . 0 MN} where N is the munber
of builds that have bea i paformed and Mi is the ad of maodules involved in

build i Fadientry in X AR represants a particular software module and is
assigned avalue of eithealor O. An entry of 1 indicates that the module was
presantineithes ad A or B and an retry of O is assigned otherwise. For
vector subtraction and mltiplicatian to wink, al of the vedors mugt be of
tbc same dimensian We will extend the vectors A and B to have the same
ditnension as the veator X, assigning a 0 to entries correspanding, to modules

that rue nol present in either build When the value of A for build 2 is
g1 eatea than that for build 1 ana particular 1nodule, this mdicates aninc ease
1 relative complexity. Convasely, when the value of build 2 is less than
that of build 1 this indicates a deaease in module complexity Whan a new
module appears in build 2 that was not a part of build 1, the value of A frn
build 1is zere and the diange is equal to the full value of A for build 2.
When amodule is presat in build 1 but has bem removed prior to build 2,
the value of A for build 2 is zero and the dhange in the systean is a deca ease
by the full value of A for build 1. Thesum of these inaeases and
dec cascs, Amdn'c , indicales how the systaan as a whole has increased or

decaeased in tenmns of relative complexity.

3.3 Measuring Code Churn

A hmitation of measuring code dellas is that it docsn’t give an
mdicator as to how mudi diange the system has wmdergone. I, betwean
builds, several software modules are removed and ase replaced by modules
of soughly equivalent comnplexaty, the code delta for the systein will be close
1o 7o, Theoves al complexity of the systan, bawd an the meuic used to
campute delias, will not have dianged mudh However, the reliability of the
system oould have bear sever ely eflected by the process of replacing old
modules with new anes What we need is a measure to acconpany code
delta that indicates how mudi change has occurred Code dhunm 15 a
measuranant, calculated in @ similar mannes to cork delta, that provides this
informatian

The formula for code dum follows the same method of calculation as
code delta with one major exeeption. Code chuim uses the absolute value of
the diffaence i complexity of a module beswean builds The formula fa

computing, code chum is V = (I]f -4 I)(A 42), As before,

melric
with code delta, when anew module isadded in build 2 that was not present
inbuitd 1, the value of V' for that module i build 1 is zero. However, the
canvarse, where @ module in build 1 is not presentin build 2, results in the

cdiange in complexity being, equal to the positive full value of the metric for
build1.

When several modules cuc replaced betwean builds by modules of
roughly the same complexity, code delta will be approximately 7L% but code
chum will be equal tothe sum of the value of Viorall o the modules, both
inscited and deleted Both the code delta and code churn foi @ particular
meiric are needed to assess the evolution of a system These measure nents
car then be related to the rate at whid: new faults are introduced into the
systein

3.4 The Profiles of Software Dynamics

To assigt in the subsequent discussaian of progran fimctionality, it will be
useful to make this desaription somewhat more precise by introducing some
notation ccnvenionces Assume that a software system S was designed to
inplement a specific ad of mutually exclusive functian alities J. Thus, if the

syst ernis executing afunctionality f € 1 then it cannot be expressing,

clemnents of any other funcicaality in Jo Eadh of these fun cianalities in 2
was designed to inplemant a set of softwa e specifications based o a user's
requirements From a user's pesspective, thissofiware systan willimplement

aspecific set of operations, O. ‘|bis mapping fiom the set of user perceived
opeiatians, 0, 1o a sot of specific program fundionalities, #, is cne of the
major lasks in the soflware specification process “1’he softwaie design
process is basically a matter of assigning fundianalities in J' to specific

pogran modules 1 € M , the ad of program modules The design
process may be thought of as the process of defining, a ad of 1elatians,

ASSIGNS oves 1 X M sadh that ASSIGNS(, m) is true if functicnality
J1s expressed in module 1.

Fach operation that a system may pesform for a user may be thought of
as having, been implencnted in @ set of functional specifications There may
be a meto-one mapping betwemn the usar's naticn of an ope ation and a
program fundticnality. in most eases, however, these inay be several discrete
fundtionalitics that must be executed to express the user's cancept of an
operation Fot eadh operatian, 0, that the systean may perform, therange of
functiaualities, f, must be well known Hachof the fundianalities will
exea cise a particular subset of pyogy am modules

Although we cannot measure time I any meaningful way for execution
events of soflware, we can obser ve the transition frorn ane module to another.
These transition intes vals defme the nolian of the soflware epoch An epoch
begus with the anset of execution in @ particalan nodule, and ends whien
cantrol iS passed to another module The measurable event for modeling,
purposes is this transitico amang, the modules We will commt the number Or
calls from a module and the number of retums to that module. Fadh of these
transitions to a diffaait module from the ane currently executing, will
regnesa an increanantal change in the epodh number. T ograms executing
i their nonmnal mode will make state transitions betwean modules rather
rapidly. Intams of real clock time, many epodis may elapse in a relatively
short petiod

Associat ed with mdividu a users of a soflwar C syd em is their
operationa profile, or the probability with whidh they will exercise eadi of
the independent and mutually exclusive operations of the system [13]. This
opeational profile 1s a nuultimornial distribution for ead of the operations in
thc st O. Wirm s soflware systean is canstrudted, it is designed to fulfill a
st of funclicnal requirenants Users will then run the soflware to pesform a
st of opaaticus Typically, tbc operations may not use all of the
functicnalitics with the same probability. The functional profile of tbc
soflware is the ad of unemditional probabilities of each of the functionalities
¥ being executed by the user. The probability that the user is executing,
functianality & is givan as o= PHY=AL k- 1.2, # (¥}, A program executing
an asaial madhine can aily be executing cne functionality at a time.

When a program is executing a particular functianality, fj, it will
disdribute itS adlivity actoss the ad of modules, My, Al ay arbitrary

epody, i, the program will be executing a module gy, € }\4/‘ with a
probability ¥ik-The ad of canditional probabilities u,, whese k1,2, # {F}
constituie the execution profile for functianality f3. As a matter of the

program’s design, there may be a non-enpty set A ,0) of modules that may

m may ncd be execnted whan a particular functionality is excrcised A

particula execution may notinvoke any of the modules Of A, (ﬂ’ while m
other situations al of the modules may participate in the executian of that

fundticnality. This vauation in the cardinality of IMP(D will cantribute
significantly totbe eflort required to test such a functionality.
Most opaatians will tend to apportion their time across a number of

functiaualities For a givan operation, let / be a propotianality constant
0 < Ji <1 will represent the proporticn of epochs that will he spent

. th . P (4 T .
exccutingthe &7 functionality in (lfk T'hus an operational profile of a ad
of modules Will 1guesait a lincar combination of the conditics yal
abilitics ujg : A .
probabilities wig * p, L /'(,'u)]l L7

The manner in which a program will exa cise its many modules as the
user ciooses 1o execule the functicnalities of the program is detesmined
directly by the design of the program Indeed, this mapping of functionalit y
anto program modules is the overall objective of the design process The
module profile, q,is the unconditianal probability that a pasticular module
Will be executed based an the design of the program Itis derived through the
applicatian of Bayes' rule Firgt, the joint probability that a given module is
exccuting and the progy am is €XCrcising a particular functianality is given try
PAX, ;Y e R BY = K PILY, = 1Y = R): o, whac
ad & are defined as befor ¢ “1'bus, the vnconditional probability, g, of

exealing maodule

S nr v) J unde ertica
>_”} X, . JOY kY o A@Mdﬁ&ﬁedg‘g&%fm the
fundtional profile and the executianprofile! culy me module can be
exeauting, al any ane time lence, the dists ibution of g is also multinanial
farasysem ccnsiding, of 1mor ¢ than two modules

3.5 Functional and Design Risk

Yiach functicuality has an associated e<ecution profile, Tepresentmg, the
probability of executing any of the modules under that fundtionality. As
cach module is execut ed, thaae IS an associated cost of execution . We will
assumce that this cost is @ functian of the module’s relative complexity, as
1elative conplexity is a fault sutn ogate. Had functionality will careate an
ePOSl ¢ 1o a potential fauh m a particular module. This exposuie 1%
represaited by the exeoutian profile. The functional risk ¢ associated with

cadh functicuality is ¢ E Z P, whidh 1 also the expeded value of
K ;

the relative complexity undet the execution profile for fundianality £ The
functianal risk nary also be computed for changes to the systemn between
builds in tenns of the code delta and code churn measutes The functianal
1isk ¢, fon the code deltas is ¢, L uphio while the functicnal risk ¢

for code dnun . ¢ Z"ﬁ v,
i

‘1 hese functianal 1isk measu es arc extrernel y valuable forregressian
testing, For regressicn test, we need to identify the functionalities that will

maximize the functional risk of cithe ¢A o ¢v This will insure the

maximum €hHosure to the potential faults that were introduced due to the
changes in the code between the builds

Yo a given operatianal profile, the module profile is ddemined by the
manner in which the systemn has been designed to didtribute its activities
ammg modules Hach design altanative will induce a different module

profile ¢, on the system, where ¢, = >:_q',/)'_. The Bayes risk for
! o

design is ane that minimizes gperational 1isk over several design allematives
The reliability of a system running a given functianality is directly
proporticnal to the fundtional risk If a module has a disproportionate
number of faulis, than qn execution scenan (0 that causes this module to
execule a significant number of times will be Kkely to fail ~ Similarly, tbe
overalireliability y of asystem may be sean to he dired] y related to the Bayes
1isk for the system design

3.6 Characterizing the Development Process

Ourexparience with software developmant eft orts canvinees us
that the diaracteristics of fhe developiment process exercise quite as great an
influence an the number of faults with whidh the systezn will be released mto
oparations as do the strudural charadaistics of the systes n Therefore, we
are diataderizing the development process for those systes whose structure
we are pleasuring and using statistical methods to 1¢late these measurenents
to the fault content of the systems being analyzed Seva almethods of
dhar acterizing developinent processes exist We have clected to usc the
char aderization scheme developed for the COCOMO 2.0 cost model [4].
Thae aethree reasans fathis
L This mfamation has bean shown 10 be gancradly useful in ccnstiuding,

soflware oot models COCOMOB1 (3] is generally daimed to he acauute
10 within 30% of the actual cott 70% of the time We migh it hope to oltain
this type of acauracy in predicting faukt cantent
2. The mfonmation requined for COCOMO 2.0 is penerally available for mod
Exflwaedrwelgn1)011 pr ejects
3. I the data required fa COCOMO 2.0 isrelated o the fauh ontent of the
sysen, managas will be able 1o use the sae daia to edimate oo and
quality, and will make it easics to do cost/quality tradeofls than isamaitly
possible
We are ameaned primaily with the persand mnd prgject atibutes used by
COCOMO, since we have methods of measumg structine and assessing,
requiranants ik as desa thed show. Parsa med attribut es desa ibe the skill level
and capahilily of the tedwical stafl repansible for specifying, designing, and
fnplemantmg, the syMan Prgject altritades desaibe the exdant to whidh moden
og anuning, pradicss arc used on the project we collect this infoumation from
paticipating projedts using, a questionuaire developed by Iochw at the
University of Southean California’s Center for Software Faginea ing, Several
mdividuals fion each developtnent efTort are mter viewed during, the course
of completing the questiannaires to assure that the respanses arc as complete
and unbiased as possible.

4. integrating Risk and Metrics Analysis

We are mvetigaling how 1o integrdte the methods of assesng, risk and
nwasning the evalution o 8 g fiwig e Systan as desa ibed above mito a predidar of’
the fault content of the systan & any pant i the fitwe. This predida should
ald e the following, genera) lnnitations of cwent soflwa e reliabilit y models
1L Cuiatly available ted miques do nd simulameously take a sysdan’s

strudture, ts develapmant process charadtenidtics, risk fadars, and calendza

time mto account Although same methods exist 10 puedidd arar density
during the canly phases of adevdopmant dlat 14, 15, J 6,17], they make
va y rednctiveassamptions aboud development process d i adandics, relate
anly siuchral dhaadaidics of the system to fault xaiou, predict what the
fault conlent will be at the end af a developmant phase rather than at an
arbitian y tiine, @ prodicd what the e donsity will be at the gait of systan
testing,

2. With the exceplion of the fiamaewark devaloped by Rarne 1 abaratanes (14,
nane of the amently-available prodidas far the earlly develgnnait phases
relates datic measwresto reliability y o amease divectly related to reliabilit y
(¢ &, Mean Time To Faihare, Hazud Rate). Although the relationship
between erar dasly and faihme itawsity developed fa the Rome
| aboratanies framewak can be used, it nray produce macanate reliability
predictians. This is bocause the reliabiltty of @ saftware systan depends an
the systen's oparational profile [18, 19]. For a soflware systan, the mput to
that systemn detenmines whether ae not a fauttt will be exprosed, end whether
that fanh exposure will result in @ faihwe If the systen's operatianal profile
1s such that the mod frequent fiputs are those that will expose faults, the
sysan will be spear 1o be unreliable Howeva, if the operational profile is
such that moet o the mputs to asystem do ndt epose faults, the systan wilt
apear to be reliable Wark i this field indicates that determinatice of the
systenn’s dynarmic diaraderidios camat be acoamplidhed by snple analysis
o the sysem's roquiraments and design [19], buview of this situation, it may
nat be pasable to develop apredictar that produces r eliabil tty o reliability-
1elated ednnales fiam mfamation available pricr 10 the ted phases
| loawveva, snce satic measures sudh as fault cowts o nat depend an the
cnvirantnen it in whid | the saftwar e executes, #t should he posable to develgys
a predictar that will make predidions of this type I infanmation about the

dynamic divasdaidics of the system is available, we may then be able o
extend the gaticpredidtar to make reliability estimates and forecads

3. The prtictar should be safliciantly adaptable to use the measuwanents of
software strunctwe, development process charadaistics, and nd that are
available duing cadh phase in a development eflat. Fa bidance,
development process disnactaridics that are available early o a developinat
ciat would include etimates of the developmant sdsedules, dafling profile
extinnzées, and a plan far phasing, the developmaent dlat. As far as structural
divadaidios are cmeaned, fundian points o object points might be
cnsidared fao the carlly phases of a developmand elat, as might the
canplexity cdeganzatians associated wath the COCOMO 2.0 soflware coed
model, while inare detailed strudnal mfaumation would be available o ldta
phases Many of the types of assesanents of ik desaibed in Section 2 are
available dwing the requitanents sand ardhitedwral design phases (eg,
qualitative asssanant of the conplexity of a denpe, numba of
equitemaents afledted by a dhange, ste and numba of data structures
allected by a drange).

We prapose a predidtas in the fam of a saies of Iinked birth and death
models that can beused to estimate total fault cantent. The expresaans for the rates
wald be fundians of the syMan’s studwal dharadtaidics, its developmant
process charad aidics, 1isk asscsanant, and the mumber of faukts already presant in
the sydem “the predictar would use a birth and death model fae cach life cyde
developmant phase 1o make edtimates of the epeded numba of aras i a wak
produd produced dwring that phase. i additian to the expocted numbea of s,
the probabilily of the produdt ocutaining a particular number of errors would also
be available. Thispnobability distribution, together with infarmation about how the
remaming entaes muttiply durmg the nesdt phase, would be used as myput to the bith
and death model rep esanting the nexd phase of developant.

5. Conclusion and Future Work

My of thensk indicstars that we are relating, to reliability and faull content
are quantitative - far indance, the numba of Ines of code affected by the change,
the diat required 1o fmplanait the dange, amd the stz of data and code arvas
affected by the dhange can @l be measimed o estimated Otha risk mdicaars, such
as the paciived carplealy of a diange 10 an existmg system, can af lead be
asdgned Jevds accrdmg, o well-edtablidhed categariztion methods [3, 4]
Heoweva, thae are sane impartant risk faders that ane entirely qualitative Yo
exanple, canflids betwea requiranents dizanges are an impartant souree of faults
We are naot awae of any method by which the type and extant of these canflicts
could be meaningfully quant ificd within the soope of ow anrant ofl art

In the area of marics anatysis, ow canent wark involves measumg, the
evolution of vanious NASA soltware systerns to oblam measures of code delta and
oude dinun These systans imclude selected partions of the S1'S flight sifiware, an-
bod cntrol software fan munanned pracoaafl anraitly wnde developimant, and
thegound sysans fo sevaal wunamed spacearafl Using, mfonmation fram the
problan trackmg systems used during, test, we oz estimate the pomt & whidi a
fault was fidt msated mto the. code By doing this, we dbtain both e imat es of the
1ade of fault n 1oducti on, and validate the use of the code dells and code dnn
meaau es as 8 a rogat os for fanh count } Iaving, obtained vatues for these rd es, we
cn then 1edate than to the developmant process charadengtics and measires of
nsk. Atthougl we are doing this enly for the impleanentation phase, we dond see
iy reasan wWhy we could not extend thistype o analysis to the eatlia develgpmand
phases Howeva, we have it ontionally 1 edrited gypselves 1o analyzing the
cvolutian of e sow e oode o cad 1 softwar e systean 1 his 1s for the follow g,
Ita’ .11\

1 While thare is a wide vaidy of amtanated tools to measue sanve oode,
thae e fow 1ools available far measumg roquiranads and design
documa dation

2 Requitanaits md desagn doannantation, at lead fa the dlats we ac
studying, tend 1o be in fonus that camat be easly measwed Requinanents
epeaally tend to be tn natwal Ingnage a sanifanmal ndtation that cama
eagly be measwad without epoding geal dlat i tandatmg, the
requiranents mito 8 fonnal natation that can be read by autamated tools

3. Unlike suoe code, tequiranents and design: docurmentaticn is ndt usually
managed by revision control sysderns sudh as SCCS and RCS. This makes it
difhoult 1o idantily ay paticada “build” of the requianats o dewgn,
making, any measurements analogous to code deha and code dwrm during,
these phases estrancly diflicalt as well asrandering than sugpedt

Al this pomt, we examme how well the predictar described in Section 4 addresses

the himitations an predictive models given at the begnming, of this section

L Qurantly available tedmiques do ndt simutaneously take a sysean’s
structure, its develapment proces diaadandics, risk factars, and calondar
time into acoomut. The prodictar desanbed above takes all of these factars
mto acoomt In particular, it takes elapsed time into account, allowing
pradictionstobe entinuoudy updated throughout the development diat. If
the developtant process, product dharactenistios , or mdicators of risk dhange
during a development dflant, predictions can be easily updated Yar exanple,
sppose that the development charadlenstios ranain ansant fram project
satiotime 1. The development process then danges &t ime 1, and remams
the samnce until the start of testing, This model would allow predidicas of the
remaining numbar of arars 8 time € to be made. Predicting of the nunber
of faults at the dart o tesdmg would be dane as fallows;

i Use the mode! to predid the numbar of faukts remaming, & time 1.
Thisis smply P(x) * 1, where 1 is the inftial state vector speafying the
disaete probability donsity finction far the numba of faults in the
systan This would be a vedtar u of lengh [I3)] - the xth ety of u
waould dencle the probability of x fanlts ranaining in the sydan

it Udng the new develapment process charadenidics, predict how many
fauhs will be added batweon 1 and the start of tedt. Soe the model
exphicitly deals with rales, this is quite straightfawad. Fird, select 1
asthe stating pom! of the predicions. Next, write down the new rate
matix A Conpute the probability trensition matrix P(t-t) as ¢,
where tranges fram 1 to the tart of systanted. The number of faulls
rananing & the sart of tedt is simply P{t-1)*u, whae u is the
predicted number of fmlts ramaining, # titne 1, described above.

2 With the exeeplion of the frumewark developed by Rame 1 atxratories [14],
none of the anrently-available predictars for the early development phases
1edates satic meaanes tordiabilty or a mease directly related to reliability
(c g, Mean Time To Faihre, Hazud Rate). Thisis still a linitadicn for this
predictor. The predictar desaribed in this sectian retums predictions relaled
to fault comts rether than reliability. The Imitation exidts because the rete
expresians do not use any mifanmation about the dynamic behavice of the
systan Fven if this mfonmation ware available, including 1t in a form that
ccaild be used i this type of predictar would be a sipnificeat challenge. Owr
opaiamoee ndicaies that colledian o the imfannation is a significant task,
and is appreaisbly mae mvolved than the collection of the information
required to cdlitn de the predictar described above

3. The predidar should be sufliaaitly adaplable to use the measwanents of
sallware structure, develognnent process dharactandics, and risk thet are
available durmg each phase in @ developrient effart Smee the predictor is in
the fann ofa saies of linked birth and death models, ane such model for eadh
develapnnant phase, each siage of the scaries uses the meaawements that are

available far aspexfic develapmant phase As in point (1) above, we see that

pradicions can easily be updated as newe a mare acanate mfomation
beocnes available

Weintend to address the following areas i future work:

I Find ways to batter quantify risk idicators One possibitity might
involve using formal methods to specify selected portions of the sysen
under study. h may be possible to cornbine formal methods with FI'A
an new requirements and new software |f formal methods were to be
used an a production basis o on aselected basis cu Ncw software, three
would be a cansidant type of 1equiramnents specification language and
formatto which k-J A could be applied

2 Extend the work v risk enalysis to mclude relating nisks identified at
the systein level to software reliability and fault cantent As above, we
might examine the use of FI'A and formal methods to identify hazards
at the sysien level that could be related to risks in the soflware
conponent

3 lxtend the ability to measure the evolution of a software system to the
design and requireanents phases This would require finding ways to
track the evolution of a software syslan as it is being specified,
designed, and implemented to deal with the current problem of not
being able to identify ‘builds” well enough to measure quantities
analogous t0 code defta and code dum Development organizations
that are sufliciently mature might retam histotical records of technical

yeviews fron which the evolution of the requiremaents and design might
be seomstiucted Also, ways of documeniting the requitements and
desigy would have to be found that would make it possible to produce
object jve 1neasur es of systemn strocts €. One possibility would be to
1ewrite the specifications using formal methods The strudure of the
speafication could be measured with athanced versions of tools that
were devcloped as part of previous work at the Jet Propulsion
1abaatary [20].

Acknowledgment

The work described in [bis paper was carried out at the Jet Propulsicn
Iabmatory, the Naval Yostgraduate School, and the University of 1daho
through funding from the NASA 1V&V Facility in Wedt Virginia

References

[11 Noman ¥. Sdincidewind, *Reliability Modeling, for Safety Critical
Softwaie”, TKKE Transactions on Reliability, Deceanber] 99&

[2] No man ¥. Sdmeidewind, “Methodology for Validating Soflware
Metiies”, JEKE Transactions on Sofiware Engineering, May, 1992.

] B.Bodun, Software Engineering, Hoanomics, Prentice-}Hall, 1 981,

4] B.Bochm, B. Clark, ¥ Horowitz, C. Westland, R. Madad)y, R Sclby,

“Coxt Models for Yutur ¢ Software 1ife Cycle Pi ocesses: COCOMO

2.0," Aunnals of Sofi ware Engineering, volume 1, J.C. Ball za1 Sciaaice

Publishas, Amddeadam, The Netherlands, 1995, pp. 57-94.

15] N. G.levesa, “Software Safcty: What, Why, and How", ACAf
Comiputing Surveys, Vol18, No. 2, une 1986, pp. 125-163.

[6] Flaive J Weyuker, "Using, the Cansequences of Failures foi Testing,
and Reliability Assessiment”, proceedings of the Third ACM SIGSOF T
Symposium on the Foundations of Software Engineering,
Wadhtagton, D.C., October 10-13, 1995, pp. 81-91.

[7] Nounan ¥, Sdineidewind and T. W. Keller, “Application of Reliabilit y
Models to the Space Shuttle’, JEKFE Software, Vol 9, No. 4, July
1992 pp. 28-33.

[8] 7T.Kellea, N. ¥.Sdmeidewind, and 1'. A Thomtan, "Predictions for
Inacasing Confidenceinme Reliability of the Space Shuttle Flight
Soflware®, procecdings of the AlAAComputing in Aerospace 1@,
San Antanio, TX, March 28, 1995, pp. 1 -S.

(91 3.C.Munsanand “I'. M Khoshgoftaa “ Ihe Dctection of Fault-H ane
1 nograms," IKFE Transactions on Sofiware Engineering, S1,~18, No.
51992, pp. 423-433,

[10)). C. Mimsanand 1. S. Weries, “Mceasuring Softwar C Fvoluliar 1"
Iy oceedings of the 1996 IKEE International Sofiware Metrics
Symiposium, IHEE Canputer Socicty Press, pp. 41.51,

[117). C Munsan, "Soflware Measwrement: Problems and Pradti cc,"
Annals of Sofiware Engineering, Vol 1, No. 2, J.C. 1 3altzar AG,
Amdaadam 1995, pp. 255-285.

[12] J. C. Munsan and G. A Hall, “Dynamic Program Corplexity and
So ftwar ¢ T'esting,” proceedings of the 1995 IKKK International 1 est
Conference, 1HE Computer Soaety Press, pp. 730-737,

[13] J. C.Munsan, “ A Fundianal Approach to Software Reliability
Maodeliy g, will appear Proceedings of the Quality of Numerical
Softwar e Assessment Conference, Chapman and Hall

[14]). McCall, J. Cavano, "Methodology for Softlwar e Reliability y
Prediction and Assessment,” Rome At Development Center (RADC)
Tedmical Report RADC-TR-87-171. vol 1 and 2, 1987.

[15] J. K. G aflney, Ji.and C.F. Davis, “An Approadh to Etimating,
Soflwat ¢ T rors and Avail ability,” SPC-TR-88-007, ver sian 1.0,
Mnardh, 1988, proceedings of Eleventh Minnowbrook Works hoi) on
Sofiware Reliability, July 26-29,1988, Bluc Mountainlake, NY,

[16] J. ¥ Gafiney, hi. and J. Pictrolewicz, "An Automated Model for
Softwarc Y ly B 01 Prediction (SWHEP)," proceedings of
1 hirteenth Minnowbrook Workshop on Soft ware Reliability, July 24.
27,1990, Blue Mountain 1 .ake, NY,

[17] J. C. Kelly, J. S. Sherif, J. Hops, "An Analysis of Defect Densities
}ound 1 huring Soflware inywclimts” , Jouraal of Systems Soft ware,
vol17,pp 111-117, 1992,

[18] Jahn D. Musa | Anthany lanmnino, Kaathiro Okumoto, Software
Reliability: Measuremant, Predidion, Application; McGraw-Hill,
1987,18BN 0-07-044093-X,

[19]1M 1.yu, cd , Handbook of Software Reliability Yngineering, McGraw-
i1, 1996; ISBN.0-07-039400-8.

[20] A P.Nikora, R G, Covinglan, J. C. Kelly, W. J. Cullyer, "Mcasuring,
the Comnplexity of Fotal Specificatians”, funded by the J)'], Directon's
Disactionary Fund, 1992-1993.

